Главная » 2013 » Июнь » 11 » Океаны энергии
10:28
Океаны энергии

 Океан - огромная кладовая беспокойной энергии.
Здесь рождаются приливы и отливы, текут такие могучие реки, которых не знает суша, плещут волны.
Мощность океанских течений Куросио и Гольфстрим достигает трех миллиардов киловатт. Еще несколько десятилетий назад появились предложения об использовании энергии этих гигантских океанских "рек". Сегодня разработаны и конкретные проекты. Так, по мнению американских энтузиастов-энергетиков, при скорости течения 5-7 километров в час турбина диаметром 170 метров и длиной 80 метров, закрепленная якорем на глубине 30 метров под поверхностью океана, сможет обеспечить мощность 50 тысяч киловатт. Американские энтузиасты-энергетики предложили проект, согласно которому двести алюминиевых турбин, установленных под водой в 30 километрах от побережья Флориды, будто бы дадут 10 миллионов киловатт.
Не все специалисты уверены в правильности расчетов.
"Нужно изучить, как изменится скорость течения и его температура. Не погубят ли рыбу вращающиеся лопастн алюминиевых турбин?" - тревожатся океанологи.
"Не дорого ли передавать энергию из-под воды на расстояние десятков километров? Смогут ли станции проработать 30 лет в океане?" - вопрошают оппоненты.
Пока решено построить опытную установку с турбиной диаметром 10 метров.
Океан аккумулирует много солнечной энергии, но распределяется она неравномерно. Вода нагревается в тропических и субтропических зонах и оттуда растекается к полюсам. Холодная вода от полюсов течет в обратном направлении, но уже в глубине океана. Разница температур между поверхностью океана и на полукилометровой глубине может составлять 30 градусов. Если имеется столь значительная разность температур, то в принципе несложно создать электрогенератор.
Устройство для получения электроэнергии не отличается принципиально от существующих тепловых электростанций. Нагретая солнцем океанская вода с температурой 24-28 градусов в теплообменнике испаряет аммиак. Пары аммиака вращают турбину электрогенератора и поступают в другой теплообменник, где охлаждаются пятиградусной водой и конденсируются. Одна из основных трудностей - как поднять с полукилометровой или километровой глубины громадные массы холодной воды. Скажем, электростанция мощностью 200- 400 мегаватт потребует для своей работы 5 тысяч кубических метров такого охладителя в секунду, что лишь немного уступает стоку Волги. Труба, пропускающая этот огромный водный поток, должна будет иметь диаметр около 30 метров.
Предлагается использовать вместо аммиака теплую морскую воду. Чтобы превратить ее в пар, с помощью вакуум-насосов в 15 раз понижается атмосферное давление. Вода закипает, пары направляются в турбину, а из нее попадают в конденсатор, охлаждаемый морской водои с глубины. Достоинство этой схемы - не нужен аммиак или фреон. Кроме того, в конденсаторе побочно получается пресная вода. Но не будут ли выделяющиеся при испарении морской воды растворенные в ней газы препятствовать созданию необходимого вакуума? Не уйдет ли вся генерируемая полезная мощность на вакуумнасосы?
А самое главное препятствие - при вскипании морской воды резко возрастает концентрация солей, которыми забивается оборудование, и оно из-за коррозии быстрее выходит из строя.
Таким образом, еще не пришло время в широких масштабах практически использовать для производства электроэнергии течения и разницу температур. А вот волны и приливы уже сейчас дают энергию.
Чем круче и мощнее волна, чем чаще она накатывает, тем больше полезной работы она способна совершить. Во внутренних морях типа Каспийского и Черного расстояние между соседними гребнями достигает 60 метров, а высота волн - 6-7 метров, в Средиземном же море - соответственно 250 и 9 метров. В открытом океане встречаются и полуторакилометровые волны высотой 12-15, а иногда и 20 метров. Размеры волн во многом зависят от силы ветра.
В 1806 году английским адмиралом Бофортом была разработана шкала для измерения силы ветра. Ноль баллов - мертвый штиль, а 12 баллов - скорость ветра 30 метров в секунду. Этой скорости соответствует волнение моря 9 баллов. Кстати, многие связывают легендарный девятый вал с 9 баллами. Однако исследования показали, что отнюдь не всегда девятая волна - самая мощная. Американцы самой сильной волной считают седьмую, древние римляне десятую, а греки - третью.
Потенциальная мощность всех морских и океанских валов оценивается в 108-1010 мегаватт. Однако реально можно попытаться использовать лишь 107 мегаватт.
Здесь важна мощность, приходящаяся на погонный метр фронта волны. Кое-где она достигает 70 киловатт.
В морях нашей страны она меняется от 6 киловатт для Черного моря до 30 для Баренцева.
Первая волновая станция была построена во Франции еще в 1910 году, а теперь устройств, преобразующих энергию волн в электричество, придумано множество.
Тут и плавучие резервуары, в которых волна сжимает воздух, а тот, в свою очередь, вращает воздушную турбину, и каплеобразные поплавки, качающиеся на волне и приводящие в действие гидронасосы, и соединенные шарнирами плотики, угол между которыми изменяется в соответствии с формой волны.
В Истринском отделении Института электромеханики разработана плавучая установка с ветроколесом, одновременно использующая энергию и волн и ветра.
Еще один оригинальный проект осуществлен вблизи японского города Цуруока. Небольшая бухточка перекрыта колпаком с отверстием вверху. Над отверстием смонтирована воздушная турбина с электрогенератором. Турбина вращается потоком воздуха, возникающим при колебании уровня воды в бухточке. При однометровой высоте волн мощность генератора - 3 киловатта, а при двухметровой - в четыре раза больше. По очень похожему проекту сооружается станция, использующая прибой, в Норвегии.
На океанские берега ежедневно набегает гигантская волна приливов, рожденная притяжением Луны. Запасы приливной энергии в нашей стране равны примерно 200 миллиардам киловатт-часов в год. В одной Мезенской губе на Белом море можно соорудить приливную ГЭС, вырабатывающую 90 миллиардов киловатт-часов.
Для этого губу следует перегородить стокилометровой плотиной высотой 20 метров. При установке в ней 1000- 1500 турбин будет вырабатываться мощность в 25 миллионов киловатт. Перспективно сооружение приливпых станций и на Мурманском побережье; для некоторых его мест уже разработан ряд проектов. Огромны запасы энергии в Пенжинском и Гижигинском заливах, где амплитуда приливов достигает 13 метров.
Рассматриваются проекты приливных плотин, которые приведут вдобавок к климатическим изменениям.
Например, в проливе Невельского между островом Сахалин и мысом Лазарева (ширина около 8 километров, глубина - 7 метров) каждые шесть часов попеременно прилив сменяется отливом, в результате чего сначала теплая вода из Японского моря устремляется в Охотское, а затем холодные водные массы Охотского моря проникают на юг. Перегородить пролив дамбой технически несложно. Затраты вряд ли превысят стоимость сооружения крупной речной плотины. Но зато если nponvскать воду через шлюзы только в северном направлении, одновременно получая электроэнергию, то за год Охотское море получит четыре теплых годовых стока Волги, а Японское море будет наполняться ещо более теплой водой течения Куросио.
Сейчас в мире работают две приливные станции. Одна из них сооружена во Франции на берегу Ла-Манша в устье реки Ране в 1967 году. Ее максимальная мощность - 240 мегаватт. При перемене течения лопасти турбин поворачиваются, чтобы использовать отлив. В течение года средняя мощность станции составляет всего четверть от максимальной.
Годом позже вблизи Мурманска в Кислой губе вступила в строй экспериментальная приливная станция мощностью 400 киловатт. Основная цель проекта - проверить, как проявят себя в суровых условиях Севера конструкции с применением новых технологических решений. Станция монтировалась на мысе Притыка, где расположен порт с необходимой производственной базой.
Все системы станции были размещены на плавучем кессоне, который затем отбуксировали в Кислую губу и затопили там в горловине залива. Кессон по бокам был надстроен заранее заготовленными секциями плотины.
В небольшой книжке "Океан энергии" американец Л. Голдин писал: "В случае успеха русские, известные как практичные мечтатели, планировали создать сеть небольших приливных электростанций на побережье Белого моря для получения дешевой энергии".
Категория: Развитие энергетики в строительстве | Просмотров: 1777 | Добавил: flyq | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]